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Foundations of Swarm Intelligence:
From Principles to Practice

Mark Fleischer
Institute for Systems Research
University of Maryland
College Park, Maryland 20742

Abstract— Swarm Intelligence (SI) is a relatively new paradigm One promising approach is based on what is often referred
being applied in a host of research settings to immpve the to asSvarm Intelligence (SI). The term Sl has come to repre-
management and control of large numbers of interacting entities sent the idea that it is possible to control and manage complex

such as communication, computer and sensor networks, satellite . . .. . .
constellations and more. Attempts to take advantage of this systems of interacting entities even though the interactions

paradigm and mimic the behavior of insect swarms however often P€tween and among the entities being controlled is, in some
lead to many different implementations of SI. The rather vague sense, minimal. This notion therefore lends itself to forms of
notions of what constitutes self-organized behavior lead to rather distributed control that may be much more efficient, scalable
ad hoc approaches that make it difficult to ascertain just what Sl and effective for large, complex systems.

is, assess its true potential and more fully take advantage of it. Th derlving feat f S| b d b fi
This article provides a set of general principles for Sl research € underlying Tteatures o areé based on observanons

and development. A precise definition ofself-organized behavior ~ Of social insects. Ant colonies and beehives, for example,
is described and provides the basis for a more axiomatic and have the interesting property that large numbers of them
logical approach to research and development as opposed to theseem to conduct their affairs in a very organized way with
more prevalent ad hoc approach in using SI concepts. seemingly purposeful behavior that enhances their collective

The concept of Pareto optimality is utilized to capture the . o . .
notions of efficiency and adaptability. A new concept,Scale survival. Surprisingly and paradoxically, these insects seem to

Invariant Pareto Optimality is described and entails symmetry Utilize very simple rules of interaction. This phenomenon is
relationships and scale invariance where Pareto optimality is very similar to those addressed in other domains of inquiry
preserved under changes in system states. This provides ajnvolving complexity such as cellular automata and the study
mathematical way to describe efficient tradeoffs of efficiency ¢ -ha0s [3], [4], [5]. These areas along with S| have perplexed
between different scales and further, mathematically captures L S
the notion of the graceful degradation of performance so often a large number of scientists _for man_y years [6]. _HOW Is it
sought in complex systems. that “swarms” of creatures with relatively low brain power
and communications capabilities can engage is what is often
termed “emergent behavior” reflective of some “collective
intelligence” [6, p.6] —behavior that seems to exhibit a more
global purpose?
. INTRODUCTION Unfortunately, there is no widely agreed upon definition
ODAY'’'S communications networks have become enoef what Sl is or how it should or could be mathematically
mously complex systems. New technologies from sewlefined or characterized. Many terms have been associated
sor networks, web-enabled PDAs, remote surgery systemith S| such asemergent behavior, self-organized behavior,
to constellations of orbiting satellites all require enormouspllective intelligence, and the like and have been used in a
numbers of communicating and interacting entities. Thesgriety of contexts and associated with a host of applications
entities must work together harmoniously to be effective. Ag], [8], [9], but these terms also suffer from vague definitions
the numbers of these interacting entities increases, ensurirgdescriptions. There is no general, mathematically oriented
their efficient operation becomes increasingly difficult. Indeedlescription that ties all of these concepts together.
for the past three decades this growth in general has approxThe lack of precise definitions and, hence, theoretical foun-
imately doubled every 18 months [1, p.32]. New paradigmdations, poses a number of significant problems and even
of modern warfare also indicate an accelerated growth in tleauses confusion. The lack of precise definitions is the least of
numbers of interacting systems. Amidst this growth, thetfie problems—this confusion also entails missed opportunities
is a growing consensus among experts that current netwag well. All these different descriptions and implementations
management approaches will be insufficient to handle timeuddy the waters of how to productively utilize SI concepts.
level of complexity that is envisionéd2]. Consequently, new Without a clear understanding of what Sl is and how and why
approaches for network management and control in compléxarises, it is very difficult to envision how to take advantage
systems are needed. of its true potential.
The remedy for this apparent confusion comes from new
1As_ stated by the National Research Council in a report on counteri Brspectives that illuminates thendamental properties of
terrorism: “Research is also needed for self-adaptive networks that . . . . .
%fndThls article seeks to do just that by articulating some

reconfigure themselves in response to damage and changes in demand ) X ’ h
that can degrade gracefully.”[2] useful ideas based on perspectives from evolution, notions

Index Terms—swarm intelligence, self-organization, multiob-
jective optimization, Pareto optima, finite-state machines
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of efficiency, and adaptability coupled with a more formategarding Sl and its myriad of applications. Section Il de-
definition of self-organized behavior. scribes why the three formalisms described above provide
This article formulates three strategic or foundational framex sound basis for developing the theoretical foundations of
works from which to build a successful theory of Sl and whiclsl by describing similarities to thale facto frameworks
provide guidelines for how to implement S| concepts. Thesassociated with simulated annealing. Sections IlI-A through
frameworks are based on the development of the succesdfliC describe the three frameworks on a conceptual level.
theories pertaining to th@mulated annealing (SA) algorithm. Finally, Section IV provides concluding remarks.
The application of these frameworks to Sl may provide the
necessary yet still missing ingredients for developing a bettgr g ackcROUND: THE SWARM INTELLIGENCE PARADIGM
understanding of SI. This may lead to entirely new ways of ) .
viewing and understanding this paradigm and ultimately allofy: OPServations of Social Insects
for more practical implementation schemes. Observations of social insects such as ants and ant colonies
The most important part of this foundational triad, and @rovide a great deal of insight into their behavior and Sl in
necessary ingredient for developing a solid theoretical foundgeneral. Ants and ant colonies have several ways of solving
tion for Sl, is the articulation of somfirst principles based on different but related problems. The main mechanism for solv-
the relevant laws of nature and their implications. This servéizg them is through the use of chemical substances known as
as a guide that governs and constrains the articulation of thleeromones which have a scent that decays over time through
other important components in developing a useful theory. Ftite process of evaporation [6, p. 26]. These pheromones form
Sl, these first principles are based on the laws of evolution atite basis of what amounts to a clever, and apparently simple,
natural selection. As the reader will discover, its reasonalf@mmunications and information storage and retrieval system.
implications suggest a more precise and mathematically usefihce pheromone strength or intensity decays over time, it also
definition of self-organized behaviorthe evolution of system  provides a very simple information processing mechanism that
states along a Pareto optimal frontier. can implement forms of positive and negative feedback [6, pp.
The second component of this triad is the articulation &-10, 41] andreinforcement learning mechanisms [6, p.96].
an appropriatelynamical framework, a way of characterizing This “processing” capability is illustrated in the simplicity of
system dynamics that is a consequence of or constrairgelv ants utilize and respond to pheromones.
by the first principles. The dynamical framework suggested As an example, consider how ants actually solve shortest
here is based on a new concept in the context of Slpath problems. Their motivation for solving these problems
Scale Invariant Pareto Optimality (SIPO). SIPO is a powerful stems from their need to find sources of food. Efficiency
concept that captures notions of symmetry and scale invagiictates that they find sources closest to their colonies. Ants
ance and can address the issues of how swarms of entifjggny ants) first set out in search of a food source by randomly
communicate, modify their behavior, amdapt to changing choosing (apparently randomly) several different paths. Along
environmental conditions—one of the hallmarks of Sl. Thithe way they leave traces of pheromone [6, p. 42]. Once ants
dynamical framework also provides a set of rules that, ifind a food source, they retrace their path back to their colony
effect, imposes constraints on a system’s dynamics so as(amd in so doing inform other ants in the colony) by following
maintain consistency with the implications of the relevant lawtheir scent back to their point of origin. Since many ants go
of nature as articulated in the first principles. out from their colony in search of food, the ants that return
Finally, the third component of this triad is the articufirst are presumably those that have found the food source
lation of an appropriatgroblem framework. This provides closest to the colony or at least have found a source that is in
useful ways to abstract these ideas and allows them to $gme sense more accessible. In this way, an ant colony can
implemented. It provides a concrete way of defining problenigentify the shortest or “best” path to the food source [6].
that help to further narrow the issues and focus research andrhe cleverness and simplicity of this scheme is highlighted
development efforts. This article describes a general test-betien this process is examined from what one could conceive
approach using the concept sfiarming finite-state machine of as the ants’ perspective—they simply follow the path with
(SFSM) models. the strongest scent (or so it seems). The shortest path will
Together, this triad of frameworks, ometa-formalism, have the strongest scent because less time has elapsed between
present a unified scheme for approaching the research praliien the ants set out in search of food and when they arrive
lems and investigating ways to implement Sl concepts. Iiack at the colony, hence there is less time for the pheromone
addresses how swarms of entities must communicate awdevaporate. This leads more ants to go along this path further
modify their behavior in response to information from othestrengthening the pheromone trail and thereby reinforcing the
entities and their environment for there to exist the emergestiortest path to the food source and so exhibits a form of
self-organized behavior known as “swarm intelligence”. Thigeinforcement learning [6], [10], [11].
set of perspectives leads to a more precise mathematicaBut this simple method of reinforcement or positive feed-
definition of Sl, describes ways to more fully take advantageack also exhibits important characteristics of efficient group
of this paradigm and, constructively address any of its inherel¢havior. If, for instance, the shortest path is somehow ob-
limitations. structed, then the second best shortest path will, at some later
The rest of this article is organized as follows: Sectiopoint in time, have the strongest pheromone, hence will induce
Il provides more detail on the current research environmeahts to traverse it thereby strengthening this alternate path.
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Thus, the decay in the pheromone level leadsethundancy, identify ants from other colonies) [16, p.156]. Pheromones are
robustness andadaptivity, i.e., what some describe amergent complex chemical signalling systems, yet most of the research
behavior [6]. that deals with them or models their effects use the concept
Many optimization algorithms attempt to imaginatively capin very limited ways,e.g., as a scalar in ant algorithms [14],
ture some notion of Sl. Indeed, many difficult optimizatiorf17] as opposed to a more complex scheme represented by
problems have been solved by so-called algorithms such vectors. Although, as we shall see, even simple scalars can
as the Traveling Salesman Problem, the Quadratic Assignm@otssess enough information related to a measure of efficiency,
Problem and othdxP-hard optimization problems (see [6] for pheromones are likely to have more complicated properties
a large number of examples and citations). These algorithrii&n their mere intensity [6]. Indeed, Wiener [16] in his
generally utilize some analogue of pheromone or some sim@eound-breaking booKybernetics emphasizes the importance
stigmergic signalling mechanism. AntNet [12] for examplegf intercommunication among the entities in question:
uses reinforcement learning to increase the probabilities of How then does the beehive act in unison, and at
using certain routes in a routing algorithm. The probability  that in a very variable, adapted, organized unison?
value is used as an analogue to pheromone. Another example QObviously, the secret is in the intercommunication
is in [13] which uses a similar update mechanism to control  of jts members. . This intercommunication can vary
unmanned aerial vehicles. These different approaches all try greatly in complexity and content .the value of
to take advantage of how social insects seem to function. 3 simple stimulus, such as an odor, for conveying
These attempts to implement some S| characteristic however jnformation depends not only on the information

often are forced to creatively sidestep the concept of self- conveyed by the stimulus itself but the whole ner-

organization and its implications. vous constitution of the sender and the receiver of
stimulus as well [16, p.156-7].
B. The Mystery of Self-Organization However Sl is described, one of its central characterizations

. is that ofself-organization. But this also begs the question of
Although much has been leamed from observations of theg at constitutes Sl because there is no clear understanding of

social insects, there is no widely agreed upon definition of L i
what constitutes SI. Indeed. the tehis bandied about so what self-organization or emergent behavior is! These terms

. . . . have been around for some time and their definitions have
often and in such a wide variety of contexts that it causes . . .

. . . . . .~ Been and probably will continue to be debated for some time.
confusion leading to many different interpretations and im-

. . Serraet al. describes the concept of self-organization gen-
plementations for various problems. Although many of these s : h )
: . . rally as “highly organized behaviour even in the absence of
implementations reflect some notion of Sl, they often entai . S . o
. o . a pre-ordained design.” [18, p.1] (but what is ‘organized’?).
other paradigms as indicated above suchreisforcement

learning [11], [14] and sigmergy which refers to complex They go on to further describe examples such as the reso-

o . . . : : gance phenomenon in lasers, and in cellular automata where
indirect interactions based on simple signalling systems [, expected and complex behaviours [| can be considered as
p.14]. Where does one paradigm end and the other begin P P

Still, other research seems to freely use the term Sl when thgrelf—organlzgd. [.18’ p-2]. . .
. . ; o arlier, Prigoginé et al. [5] described self-organization in
simply are large numbers of interacting entities (see [15] for,

; . : . ch[emical reactions and thermodynamic contexts. His notion
a complete discussion on competing paradigms). Does tha

alone suffice to describe or define SI? Is it merely a way 7 quite enlightening and emphasizes the elemerftuofua-

somehow taking advantage of parallel computing methods ions in far-from-equilibrium system states. Non-linear system
9 9 b buting ‘changes, fluctuations as he refers to them, due to either

Notwithstanding the many different descriptions offered bYandom events or chaotic dynamics, are then amplified by

many researchers, the main features of Sl seem to involye ... . . .
e - o . positive feedback mechanisms. This results in structures that
forms of limited or minimal communications and/or inter-

: : : " ...~ emerge spontaneously which often are presented as examples
actions, large numbers of interacting entities with limite I~ T : o )
reach and some alobally efficient. emeraensaf-oraani zed of self-organization. It is interesting that Prigogine provides an
" 9 Y ' 9 9 example of Sl based on the clustering behavior of termites in
behavior [6, p.9]. Bonabead al. [6, p.9-11] suggests that . .
. . cgnstructing termite nests [5, p.181-186]. See also [6, p.207-
the central features of Sl are based on the manifestation

self-organization that arise from the interplay of four basic 4] Even earlier, Wiener [16] used the term in describing
. 9 i . bay “the brain waves of humans. See [16, Chap. 10: Brain Waves
ingredients: 1) forms of positive feedback, 2) forms of negative

L : : . and Self-Organizing Systems]. Again, the notion of what self-
feedback, 3) theampllflcatlon of f_Iuctu_anons t_hat give nse organization is remains unclear. Is it merely some structure or
to structures, and finally 4) multiple interactions of multiple . . LT
entities pattern? And if so, how is one to distinguish it from merely

But éven this characterization provides very little insi hrtandom effects?
into what S is except in ver desc?i ive termsyFor examgle What is needed to truly take advantage of Sl is more than the
P Y P ' Plere descriptions of the attributes of S| and self-organization.

Ithg(r)s:]or:;ts E\Uglvz)épilr?ltnh;nwg Liﬂgy“:j? d V\giyw\;]vmt’hgr Qﬁg\l’l@omething amenable to formal mathematical definition would
b y they did, y they e quite valuable. This article offers a new and potentially

have the evaporative properties they have, or why they have
their Chem|cal makeup, or how ants can somehow _d|5tmgw5hPrigogine won the Nobel Prize in 1977 for his work on the thermodynam-
among different types of pheromone (presumably in order tes of non-equilibrium system.
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useful working definition of emergent or self-organized behavhe entropy of a thermodynamic system, the randomness of its
ior for SI based on the imperatives of evolution and naturatates, tends to its maximum value at any given temperature.
selection (as opposed to the imperatives of thermodynamigetropolis [24] utilized this idea in developing a method
and irreversibility that elicited Prigogine’s definition [5]). Thefor simulating the evolution of a complex thermodynamic
concept of self-organization therefore plays a central role Bystem. The underlying law of thermodynamics was manifest
the development of the foundational principles of SI. in the objective function of a non-linear program (NLP). The
These principles are founded on the notion that selébjective of this NLP was to maximize the entropy of a
organized behavior of the type observed in entities subject $tationary Markov chain subject to certain constraints (such
the laws of evolution involves forms of efficiency in resourceas the the constraint that expected energy level is proportional
allocation. It emphasizes the importancesigjnals as mecha- to temperature) [21].
nisms of change in system states subject to the imperatives offhe solution of this NLP lead to an expression for the
the evolutionary pressures of natural selection. It is importastationary probability distribution (the Boltzmann Distribution)
to recognize that the response of insect swarms to extergéleach system state [21]. Thus, the implication of the first
stimuli is governed by processing systems that have beprinciples was the expression of the Boltzmann Distribution.
heavily influenced and affected by the forces of evolution. Thig/hat remained was to somehow develop an appropriate
allows consideration of a much richer spectrum of behaviorsechanism that described how this thermodynamic system
both simple and complex, than those implied by the meshanges from one state to another while at the same time
application of positive and negative feedback mechanisms f@maining consistent with the maximization of entropg,,
simple signals. In fact, the type of self-organization describatle Boltzmann Distribution, as dictated by the fundamental
here can be framed asform of symmetry in that changes in |laws of thermodynamics.
the system’s behavior and operating points nonetheless leavehus, in addition to this fundamental law, @ynamical
unchanged certain attributes associated with these operatinginework was necessary to address the problem of how to
points, namely, their Pareto optimality [19]. In short, a novehodel a system that undergoes some type of change. The
definition of self-organization presented hereyjstem behav-  well-known mathematical framework of Markov chains and its
ior that maintains its operating points on or near a Pareto  global and detailed balance equations provided those necessary
optimal frontier. This notion of efficiency constitutes a centralelements that mathematically describe the stochastic nature of
feature of the foundational principles for SI and is describeghe system as it changes from one state to another while still
in greater detail in the next section. obeying the fundamental laws of thermodynamics [20], [22],
[24]. It was this utilization of the detailed and global balance
1. THE IMPORTANCE OFBASIC PRINCIPLES equations that ultimately lead Metropoks al. to his now
Developing a viable set of basic principles underpinninfamous Metropolis Acceptance Criterion, the main result of
Sl concepts is essential for successful implementations. Thietropolis’ contribution. In effect, Metropolis ‘engineered’ a
principles described here have a certain credibility and hengansition probability to fit within the framework of global and
viability because they are based on how other successigtailed balance equations given the stationary probalitty,
theories appear to have been developed. This requires saie Boltzmann Distribution.
discernment and creative articulation of the main features of Once these transition probabilities were defined, the math-
how these other theories were, in fact, developed and h@#hatical description of how a large, thermodynamic system
these features could be applied in the case of SI. The simulaigfblves from one state to another in a computer simulation
annealing (SA) algorithm is a good example of this procesgas complete [24]. Once this method of simulating a thermo-
and provides clues on how to articulate the correspondi@gnamic system was in place (in 1953), the idea of reducing
components of the central principles underlying SI. temperature slowly to “anneal”, conceived by Kirkpatrick [25]
A great deal of theoretical results on SA have been puBome 30 years later, was the final element that lead to the SA
lished in many papers and books (seg., [20], [21], [22], algorithm. This algorithm has since been fully mathematically
[23]). But this algorithm was not developed or analyzed in gescribed and analyzed by a host of researéhsse [20],
vacuum. Its development was, in fact, based on the conflip2], [24], [25]) using variouscombinatorial optimization
ence of certain factors. Three main factors or components ggfoblems (COPs) as theroblem framework—a general way of
the research evolution are discernable. The first componemaracterizing a whole host of discrete optimization problems.
consists of a set ofirst principles based on theelevant Thus, the dynamical and problem frameworks provided the
laws of nature and their implications. The second component mathematical constraints and research focus in a way that was
is an appropriatedynamical framework. Finally, the third consistent with the laws of thermodynamics.
component is an appropriapeoblem framework. These three 1o summarize how these three components of the founda-
components form the core of what can be referred to as a §@hal principles, the meta-formalism, describes the evolution
of foundational frameworks. To see how these components

provide guidance ?n developing a viable research strategy foBAlthough the algorithm seems to have been fully analyzed, this proposer
Sl, an understanding of how they worked together in the caselieves there are still a number of fundamental theoretical elements that
of SA is helpful. await discovery. See.g., Fleischer [23] for a description of scale invariant

. L. roperties of the SA algorithm. These properties illustrate some potentially
In SA, the first prlnC|pIes were based on the laws of theFr'nport.smt symmetries in SA and may play a role in research involving a group

modynamics. The most salient implication of this law was thateoretic approach for modelling SI.
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of SA theory, the first principles were based on thermody- Most complex systems, however, haseveral objectives

namics manifest as the maximization of the entropy in amat must be considered when assessing overall system per-

NLP that lead to the definition of the Boltzmann Distri-formance. Operations of these systems sometimes leads to

bution. The dynamical framework was based on the globabnflicting objectives where one objective must dfciently

and detailed balance equations of Markov chains which lednladed off” for another. In thesenulti-objective optimization

to the Metropolis Acceptance Criterion and the transitioproblems (MOPs) system efficiency in a mathematical sense

probabilities in SA. Finally, the problem framework was basei$ often based on the definition &reto optimality—a well-

on COPs which permitted the application of the ideas onto tesstablished way of characterizingsat of optimal solutions

bed problems for experimentation and analysis. A successfuhen several objective functions are involved (sag, [28]

and useful set of formalisms can therefore be modelled on ttasd the citations therein).

developmental proce$sience ought to involve first principles In this perspective, each operating point or vector of deci-

based on fundamental laws, an appropriate dynamical fransen variables (operational parameters) produces several objec-

work, and an appropriate problem framework. Each of thegiwe function values corresponding to a single point in objective

three components can be recast to within the context of Suinction space (this implies a vector of objective function

This is described in more detail in the next three sections. values). APareto optimum corresponds to a point in objective
function space with the property that when it is compared to

A. Firgt Principles: The Laws of Evolution any other feasible point in objective function space, at least

one objective function value (vector component) is superior to

Anytsgccessful ;[_heory reqn;ll_rehs tshomtﬁ reasqn:;ble anBW'd?l% corresponding objective function value (vector component)
accepted assumptions on whnich the theory 1S based. beca is other point. Pareto optima therefore constitute a special

Fhe S..I.parad|gm IS based. on opse;rvatlons of social INSeCltmset of points in objective function space that lie along
i.e, living creatures, the first principles ought to based on

ol t least b istent with. the | ¢ lut what is referred to as th®areto optimal frontier—the set
INVOIve, or at 1east be consistent with, the faws of evolutiogy points that together dominate (are superior to) all other
and its |mpl|cat|ons._ Basically, this t_heory _states t_ha_t SPECIEBnts in objective function space [29]. See also [30] and [31]
evol\_/e ot\r/]er gehn(;zatlons const?ntlyt |m|:|)rov||ngt_the|r fgness r descriptions of multi-objective GAs (their intriguing titles
survive throug € process of natural selection an gene.HStwithstanding do not encompass the ideas put forth here on
mutation. Indeed, this theory forms the basis of GAs and i

S).

associated theoretical results [27], [26]. But this theoretical
statement by itself seems insufficient to establish foundational
principles for SI. Someeasonable implications of this theory

are needed. f, .
One reasonable and important implication of the theory o "
of evolution as it relates to swarms of insects is that it Oé

selects out those systems that exhificient behavior on
many scales. This notion of efficiency is not only reasonable, f,
but is also based on observations of social insects and how

they adapt to changing environmental conditions (see [26]).

Indeed, it seems basic that an efficient allocation and useFRd. 1. The Pareto Optimal Frontier
resources provides a distinct survival value to any species.
Thus, a reasonable implication of evolution regarding the

behavior of social insects is that it lead to behaviors that arg, points, is that they correspond to operating points where
In some .measureemqent. These not|ons' of eﬁ'C'enCy andthe improvement of one objective function value comes only
adaptability have an important mathematical formalism bas%({j the cost of worsening some other objective function value—

onltheEﬁEo_nceptwon;;ete(: ogugﬁlltlyt. . Optimizati bl trading off one for another. Figure 1 illustrates this set of
) Efficiency Via Pareto Optimality: Optimization problems oints in objective function space by the opg@is where each

are ubiquitous in the real world and social insects must al %erational decision vector produces two objective function

deal with a variety of them if they are to survive. CertainlyValues f, and f, that are minimized. It is along this set

the efficient allocation of resources present problems Wh66 points that operational decisions must be restricted if

some goal or opjecnve must be mamtamed or achieved. S_US erational efficiency is to be maintained. It is easy to see
goals or objectives are often mathematically modelled usi

N . . . . "Hat the Pareto frontier dominates (is superior to) the other
objective functions, functions of decision variables or parame-

ters that orod I lue that t be eith ..~ paints in this 2-dimensional objective function space.
ers that produce a scalar value that must be either mInImIZe‘jEffective methods for determining several Pareto optima can

or maX|m|;ed. The challenge presented in these often d'ﬁ'_c'ﬂ% quite valuable for enhancing the survival value of a species
problems is to find the values of those parameters that e'“{%{ managing a complex system) because it enaitagtive
mllnlmlzeb_or trr][aX|m|ze,|.e., otptl_mtlze, t?ﬁ o(;)]e(_:t!ve funptlboln behavior. This allows the possibility of efficient operations
value subject to some constraints on the decision varableSy hen there are changes in the relative utility of the several
“We believe that other theories such as those associated with ger@fiectives or when one ObJeCt“_/e must be restricted to a certain
algorithms (GAs) offer a similar developmental model. range of values. Under such circumstances, the system can be

An important characteristic of Pareto optima, this frontier
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moved along the Pareto frontier from one Pareto optimum &pace. The additional requirement that such efficient behavior
another thereby maintaining operational efficiency. Thus, if iarises from limited communication and information, in effect,
an ant colony a path to a food source becomes congested, tiraposes some scaling aspects. These are addressed by the
other routes must be utilized. Although the distances to fodgtale Invariant Pareto Optimality (SIPO) concept described
sources are generally minimized as is the level of congestian,the next section.
these often conflicting objectives can be efficiently traded off 1) Scale Invariant Pareto Optimality: The SIPO concept
when the shortest distance is sacrificed to lessen the levelstdms from a belief that evolution has lead to behaviors of
congestion [6]. social insects that promote the entire species. Somehow over

To summarize this first component of the foundationahe eons of evolution, insects societies have developed rules
principles of Sl, the first principles and its implications sugef conduct that are biologically driven and lead to efficient
gest that both subsystems and system should behave imanagement of their environment and resources [6, p.30]. Yet,
manner consistent with Pareto optimality. What remains is gpven their apparently limited capacity for communication and
characterizePareto optimal behavior in a context reflective information processing, it seems rather mysterious that in spite
of Sl. It is noteworthy, and somewhat surprising, that thes# these limitations, their behaviors seem almost guided by an
ideas pertaining to Pareto optimality and self-organization haivisible hand that somehow efficiently manages an entire
apparently not been pursued or even articulated by others in #tm@ony’s resources! How is this possible? As stated earlier,
context of Sl research! Sexg., the very complete books on system movement along the Pareto optimal frontier lends
Sl such as [6]. Assuming that natural selection pressures hatgelf to adaptable and efficient behavior thereby increasing
imposed behaviors leading to efficient, adaptabke, Pareto the survival value of these social insects. The heart of the
optimal behavior, the question of how this is achieved in sociahatter in Sl therefore becomes:
insect societies must be addressed. What are the mechanisms How can an entire system be moved along the Pareto
that social insects use to solve what amount to MOPs with the 0pt|ma| frontier when the entities that Comprise the
limited forms of communication they seem to have? system have only limited information available to

It may be that notions of scale are involved. Indeed, the them on which to base their own behaviors and
concept ofstigmergy suggests that what has been regarded as where their behaviors have only limited effects on
collective intelligence or emergent behavior on a large scale their environment and other entities?

is effected by decisions on a smaller scale [6, p.14]. BUl tpe g1pg concept attempts to answer these types of
how is such a relationship among different scales possibigesiions. Simply put, it is a way of characterizing Pareto

when decisions affecting the local environment are based gfima solutions on many scales and thus reflects efficient
apparentlysmple information? How can system change be,y aqaptable system behaviors on many scales. It provides
mathematically described in a way consistent with movemeQty5qis for defining properties of systems that are reasonable

along the Pareto optimal frontier? More significant however ig,q haye heen observed in social insect colonies. Evolution can
the notion ofefficiently trading off the efficiencieson onescale o een as imposing not just behaviors that enhance survival
with efficiencies on another scale. Addressing these issuesys jnqividual entities, but also of groups or societies of these

mathematically is the purpose of the dynamical frameworgmities [6, p.30-1]. Thus, while ants must manage their own

described below. survival, they also derive distinct advantages from participating
in a colony. Indeed, scientists have observed behaviors in ant

B. The Dynamical Framework: Promoting Adaptability colonies that in many respects is efficient on several different

scales involving sub-societies or sub-colonies (see [6, p. 209]

ideli for how t h ticall del the d OVIO®or a discussion on nest modularity). There are divisions of
guidetines for how to mathematically mode! the dynamics bor, aspects of specialization and such that contribute to

the system in a way that is consistent with the first principle(ﬁ : . .
) . . . the overall survival value of an entire colony [6, p.2]. This
and faithfully reflects the desired phenomenon. Its articulati E y 16, p-2]

The purpose of the dynamical framework is to provid

. q terdependency seems to promote their collective, and hence
provides the necessary research and development focus . vidual survival

[
o X . Since the SIPO concept revolves around the concept of
be asked that lead to specific tests, mathematical ConStra'mﬁareto optim&it is necessary to fully characterize its mathe-

ng tr:ie “Ik Ei' Iln etshsetncitre‘, ;Lifacmtatesl th':g'tn eelr:)m? ?f thetim atical attributes. So far, only its definition has been described.
yhamical rules that, this case, ‘ead 10 Fareto opiima,q ey ey paragraphs describe another important aspect of
behavior. It is the essential feature that allows this type

areto optima.
research to proceed. P
qu ST Fhe dynamical framework mU_St be based on thesthejr economies like those of humans may indeed be guided by Adam's
two intertwined principle features of Sl—its emergent or selfSmith’sinvisible hand, i.e,, swarm intelligence!

Organlzed behavior, and the minimal information process_elt is worth nOtIng that this deSCI’iption of SIPO concepts seems, on the
' urface, to be similar to those articulated by others. Menczer ]

ing and communications capabllltles of the entities InVOIVe@escribes an evolutionary algorithm that seeks to determine Pareto optima and
These two rather vague notions must somehow lead to Mo some scaling properties. But this article does not describe the adaptable

well-defined properties and characterizations. The precedip@avior of entities in terms of movement along a Pareto frontier. Coello
et™al. [30] also provides an intriguing title, but their paper also deals with

section suggests that the emergent behavior can be cha@frtionary optimization schemes for solving MOPs and does not address
terized by Pareto optimal operating points in some decisiassues pertaining to Sl.

describing system dynamics. This alloggecific questions to
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a) The Measure of Pareto Optima: A rather intuitive may often be sufficient fasystem-wide efficiency. Articulating
yet surprisingly little known aspect of Pareto optima is itend applying this concept to systems of entities therefore
measure. This measure is based on the size of the setimposes constraints on how subsystems can inteteig
points in objective function space that are dominated by ttsample forms of information, so that a system, be it an ant
Pareto optimal frontier—in essence a Lebesgue measurecotony, a swarm of chemical sensors, or a network of computer
hypervolume. Zitzler [32] was apparently the first to publisisystems, operates on, or close to, the Pareto optimal frontier on
this idea in a brief three sentence descriptidfleischer [28] both local and global scales. How this can be accomplished is
extended this idea and described a set function that mapsan-trivial because several identical subsystems may operate
set of points in objective function space to a scalar valuen different Pareto optima in terms of local performance
the Lebesgue measure, and formally proved that this scafaetrics.
achieves its maximum value if and only if its arguments are Consider the following simple example where two, identical
Pareto optima. Fleischer also defined an efficient (polynomiaibsystems have operating points (vectors of parameters or
algorithm for calculating this scalar for an arbitrary humbedecision variables) on one of two local Pareto optiznaand
of dimensions (objective functions). xo. These two operating points lead to points in objective
function spacep, = (f(x1), g(x1)) = (f1,91) and
p2 = (f(x2),9(x2)) = (f2,92) for two local objective
, functions f and g, where, for purposes here, both are min-
. imized. Let functionsF' and G be global objective func-
tions each taking two arguments, one from each subsystem.
f o Assuming the order of arguments makes no difference in
. _ ; these functions, there are three distinct ways in which these
. two subsystems can operate on local Pareto optima: two
| ways where both subsystems operate on the same point in
- local objective function spacs,e, (F(x1,x1),G(x1,%1))
/ and (F(x2,x2),G(x2,x2)) and one way in which the
subsystems operate on different local Pareto optiira,
(F(x1,x2),G(x1,x2)). How should the global objective func-
, . . tions F andG be defined in terms of local objective functions
.Thls hypervolumg 1S .'”.UStrat'T:d py the shaded r€gIoN 185 that all three combinations of local Pareto optima map into
Figure 2 for two minimizing ob!ecnve .funct'lonﬁl .and f_g the set of global Pareto optima?
(see [29] for more complicated illustrations in 3 dimensional More generally, under what circumstances do diffecent-

space). The dotted lines are upper bounds omnd f> while - 1 iong of local Pareto optima associated with subsystems
the black dots correspond to feasible points in the underlyin Id a global Pareto optimum? Put another way, what is the
decision space. Because this set function produces a sc ' ;

Fig. 2. The hypervolume of Pareto optima.

maximized then its arguments are Pareto opfiinaplies that

: ) . _ s - level to a system-wide level may therefore impose certain
its use in SA can induce it to converge in probability to th

; %dditivity properties or exponential forms in the measures of
Pareto 9pt|ma"! . ) o performance and presents separability issues. For example,
.O.ne |m'portant aspept of this measure is thaguiaintifies when mustF(x;,xs) = f(xi1) + f(x2)? This is another
efflc!ency, i.e, changes in the ove_rall efficiency can be mathee‘xample of how the SIPO concept narrows down the playing
matically captured by a changes in the scalar hypervolume agdiy ang sharpens the questions that need to be asked and
depicted by a receding or expanding Pareto optimal frontigh,q\yered in any development work involving SI concepts.
(see below for a further discussion on efficiency tradeoffs). Although it is desired that subsystem states be maintained
This measure and its potential roles in Sl are described in tHFong a local Pareto optimal frontier at the same time system-
next sections. _ _ ~ wide states are maintained on a global Pareto optimal frontier,
b) Subsystem Interactions and Constraints on Objective  he possibility exists that this may not always be possible
Functions: The SIPO property suggests that local efficiencyepending upon how these objective functions and their re-

TThis id ind dently lated by th hor who later i lationships are defined. Afterall, subsystem states affect the
is idea was independently formulated by the author who later discove i L - :

that Zitzler had already described it in a brief three sentence pass e.tem wide objective functions which are also affected by
The author was therefore compelled to provide a formal proof and solé¥ge numbers of other subsystems. Moreover, subsystems
algorithmic extensions. _ S do not behave independently. The resulting complexity is
_This direction of proof of théf and only if implications is much more ¢jmjjar in many ways to the complexity of cellular automata
difficult, but is necessary in order to justify its potential use as an objecnge . . .

function in a metaheuristic such as SA where the mechanism of seat8§€ Pelow). The following section describes how can these

is crucially dependent on the objective function vales., the Metropolis constraints can be captured in a mathematically useful way
Acceptance Criterion the goal of which is to improve the objective functicmat still reflects efficiency.
value. - ) -

9The author is not aware of any other multi-objective optimization scheme C) Efficient Tradeoffs of EffICIency Between Scales:

that theoretically converges in probability to Pareto optima. Sometimes the benefits to the individual entity must be traded
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off for the good of the entire groupeg., soldiers must often Pareto frontier. Thus, as the subsystems and system evolves,
make the ultimate sacrifice to ensure the success of their ungighboring subsystems may evolve in a way guided by these
(or nation)® This suggests the possibility that certain statesadeoffs of efficiency measures. Thus, the state incompatibil-
of neighboring subsystems maybe ‘incompatible’. That is, ifies ultimately give rise to structures as subsystems attempt
certain Pareto optimum in one subsystem may precludet@operate on their local Pareto optimal frontier. The patterns
particular Pareto optimum in another (similar to Ising spiof states are therefore governed by their initial conditions,
glass models—see the section below on Markov Randdime various state incompatibilities in terms of Pareto optima,
Fields). Thus, it is conceivable that only certain combinatiorend the efficient tradeoffs of efficiency measures in the midst
of Pareto optima among neighboring subsystems may coexidt these subsystem state incompatibilities. The patterns or
at any given time. If this is true, it may explain the notion obtructures observed in insect swarms can therefore possibly
fluctuations as Prigogine calls them [5] and the formation obe explained in these terms.
structures as an attribute of self-organization. €) The ‘Graceful’ Degradation of Performance: The

If such incompatibilities exists between and among neiglfieregoing discussion also suggests a general and mathemat-
boring subsystems or between subsystems and system-wiitid way of describing the “graceful degradation” of system
Pareto optima, then it must be the case that there is some trapgformance. Such graceful degradation has been seen as
off between the efficiency measures of individual subsysteras important component in the management of large scale
and/or the efficiency measure of the entire conglomeration 8fstems such as the Internet [2, Ch.5]. Rather than suffering
entities. Some subsystems may have to sacrifice efficienggtastrophic changes to a system, it may be possible for system
in order for other subsystems to operate Pareto optimalBfficiency to be degraded in a more gradual manner. This is
Recall from the earlier discussion that the measure of Pardtecause system efficiency can be measured using the Lebesgue
optima is a quantification of the efficiency of a systemmeasure described earlier, hence the measures for different
Thus, a mathematical way of characterizing a tradeoff sfcales can be traded off efficiently! This idea of efficient
efficiency between two subsystems or between two scalestifdeoffs of efficiency measures provideguantifiable guide
systems is to use their respective measures of efficiencyabhow best to achieve this sacrifice of efficiency on one scale
define a Pareto optimal frontier based on them. In effedgr improved efficiency on another scale. These types of issues
the scalar hypervolumes associated with Pareto optima on can arise in a variety of contexts.
different scales themselves become objective functions for
a Pareto optimal frontier! To the author's knowledge, this
type of tradeoff has never been characterized or described
this fashion, hence provides a novel way of characterizir
subsystem to system interactions. Figure 3 depicts such
tradeoff curve where the Pareto optimal frontier is the bolde
part of the curve. Note that improvement on one scale com
at the cost of worsening the hypervolume on the other scal
Note also the concave form of the curve which is based c
the ideas that follow?!

d) Sructures and Self-Organized Behavior: The descrip-

tions of self-organized behavior described earlier often ente Subsystem Efficiency——>
the notions of structures or patterns as the main chare
terization of self-organization. The foregoing discussion oFig. 3. A tradeoff curve of different measures of efficiency.
efficient tradeoffs of efficiency measures provides anothi
way of describing how such structures and their precipitatin FOr instance, during the operation of a complex system it
fluctuations arise. may happen that environmental changes, or changes in system

First, some random configuration among the subsystem State results in a subsystem-system configuration depicted in
entities occurs. Next, the subsystems all seek their local ParEigure 3. Here, the:—axis is an estimate of a particular sub-
optimum. Finally, in the case where some subsystems canf¥Btem’s efficiency measure and theaxis is an estimate of
attain a Pareto optimum in terms of local objectives becaulfé® global efficiency measure. The black dot corresponds to the
of state incompatibilities among neighboring subsystems, the¥@system/system efficiency point under current environmental
subsystems attempt an efficient tradeoff of efficiency measufg@nditions. These conditions suggest a tradeoff of efficiency
as described above. These tradeoffs are between an estinfafe0ssible where the system's efficiency can be improved at
of the measure associated with the global Pareto fronti@rcOSt of decreasing the subsystem efficieney, the black

and an estimate of the measure associated with the lo€&f iS moved in the direction of the arrow.
Obviously, if the efficiency measures of enough subsystems
10This type of behavior has also been observed in insect colonies whaf€ degraded, it becomes increasingly difficult to compensate
soldier ants and worker bees sometimes sacrifice their lives for the goodaf their degradation. Eventually, the entire system'’s efficiency

th(ilentire colony. See [6, p.36-9]. , measure will be reduced, but the actions of the subsystems in
It should be borne in mind that the two axes depicted, one for subsystem

and the other for the entire system are not independent, but this simple Cﬁiﬁlbllshlng.thelr movements along _thIS Pareto optimal frontier
captures the essential idea of the efficient tradeoffs of efficiency measuredf these efficiency measures, provides for the most graceful

System EfficienCy em—p
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degradation of efficiency—because the degradation occurge simplest signal [33]. Thus, a strong connection between
efficiently! How this occurs poses an interesting and, needleBareto optima and simple signals is possible. In effect, this
to say, difficult problem owing to the many subsystem interascalar may constitute a mathematical analogue of pheromone!
tions with the systemi,e., the complexity problem and the fact This scalar quantity not only provides the foundation for a
that these efficiency measures are not independent. Withethole host of heuristic methods that can reveal Pareto optima
be able to quantify efficiency with this scalar hypervolumejor near Pareto optima, see [28], [29] but may also enable
however, it would be impossible to address this problem dlfie operational movement along a Pareto optimal frontier.
graceful degradation in any mathematical way that provides Pheromone may therefore be nature’'s way of mapping an
some guidance and direction for how to achieve this. Thantire set of Pareto optimal points to a single scalar quantity
approach of characterizing the subsystem to system efficieranyd suggests mathematical constraints on the form of functions
tradeoff therefore has many applications to both informatiathat mimic pheromone. Thus, just as maximizing entropy
networking, understanding the economics and managementsefved as a guide in developing Metropolis equations of state
such systems, as well as economics in general! [24] that ultimately lead to SA, maximizing this Lebesgue
SIPO is a new way of articulating emergent behavior imeasure may serve as a guide in developing appropriate
the context of systems operating under the imperatives sifjnalling systems to mimic pheromoaed how other related
natural selection. It provides a way to mathematically chaquantities should change over time or in relation to other
acterize properties of systems on many scales and imposgeantities. This is the heart and purpose of the dynamical
constraints on how the subsystems interact and functionafiamework.
affect global measures of performance. This makes imple- a) Swarm-based Solution Methods: One important con-
mentation of efficient systems more realistic, provides sonséderation in this discussion on Pareto optima, efficiency and
underlying structure from which to investigate mathematicdiimited communications is how to tie it all together. How can
forms for objective functions, has the appealing feature e effectuate solution methods involving simple signals that,
scale invariance and makes sense from an evolutionary poimteffect, solve MOPs?
of view. But can such properties arise in systems with limited One way alluded to earlier is to use the SA algorithm. One
forms of communication and information processing? Thef its parallel forms, referred to aybernetic optimization by
following section provides a clue, based on recent researcfiyulated annealing (COSA), uses scalars that are communi-
that says it is indeed possible for Pareto optima to at least bated among processors to modulate the temperature control
associated with limitations on the form of information. parameter [34], [35]. These scalars provide a feedback con-
2) Limited Sgnalling Systems and Pareto Optimality: The trol system that improves SAs performance. Like many ants
nexus of operational efficiency and S| seems to stem frosignalling each other with simple signals, parallel processors
how the swarms of entities,e., sub-systems, communicaterunning COSA communicate using simple signals in a way
and interact with each other and their environment. If we atbat enhances their collective performance.
to assume that biological systems have evolved over time toThis form of parallel computation as many similarities
operate efficiently, then the signalling systems used by soctal other parallel forms such as Tabu Search and so-called
insects must have some mathematical connection to multiandom restart local search” methods [27]. These methods all
objective optimization and the concept of Pareto optimalitghare a number of features in common with how swarms of
Moreover, such a signalling system must be simple in sonigsects solve problenesg., by exploring many different paths
sense. The Sl paradigm as indicated in the literature is basgohultaneously (see [6, p.55]). In particular, each processor in
on the use of very simple (and apparently low-cost) signalling parallel system starts at some randomly selected point in
methods. Study of ant colonies for example, shows theecision space and attempts to find the global optimum from
entire social systems operate efficiently using simple chemidhht point. With many such processors, the chances of finding
signalling systems based on pheromones. These pheromatthesglobal optimum in a reasonable amount of time increases.
constitute a conceptually simple signalling system and provide b) Transformations and Movement Along the Pareto Op-
a great deal of useful informatior,g., temporal information timal Frontier: An important aspect of multi-objective opti-
since the strength of the pheromone decays over time by thzation problems is that the vectors of decision variables
process of evaporation ([6, p.43]) in addition to memory othat produce the Pareto optima can be scattered throughout
where the ants have been. By interpreting these chemidhg decision space (the domain) in an apparently random or
signals and responding to them with simple behaviors, arlt@phazard manner [28], [29]. This is due to the interplay
perform complex functions efficiently. among the several objective functions—Pareto optima may lie
The idea of using a simple signal to convey informatioen the sides of hills rather than at their tops or bottoms (the
that leads to efficient behavior is somewhat remarkable ahatal minima or maxima). Thus, it is very difficult to determine
the question therefore arises as to whether a simple sigmélere these decision variable are in the decision space. Some
can even be associated with Pareto optima. The answeragpropriate method to determine the Pareto optima and their
this question is of course that it is possible in the sens@rresponding vectors of decision variables is necessary (see
that an entire set of Pareto optima can be measured using [28]).
a single scalar value, the hypervolume or Lebesgue measure 12Note that these results have also detaiéfitient algorithms for calcu-

as Qescrlbed e_ar“er ('n the paragraph o_n the m_e_asure of Paﬁsﬁfé?g the scalar associated with this set function for any number of objective
optima). Certainly, a single scalar quantity qualifies as perhafsctions.
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It bears emphasis that two Pareto optima that are closeman societies present self-organized behavior and certainly
to one another in objective function space may have thdwrms of ‘swarm intelligence’. The allusion to Adam’s Smith’s
underlying vectors of decision variables quite widely separatédnseen hand” ([37]) and Alvin Toffler’s social code based on
and vice versa. Thus, assuming that a gradual change siociety’s propensity for concentration, centralization, special-
objective function space is desired, such as when there iszation, standardization, synchronization, and maximization
gradual change in the relative utility of the different objectivésee [38]) suggest that the central features of SI may be
functions, some method of moving from one vector of decisionbiquitous. Are these not attributes of very complex forms of
variables to another such vector some distance away mustdvearm intelligence? What is needed then is a way to address
devised. In other words, once the Pareto optima are identifiexdcontinuum of complexity and swarm intelligence.
some method of transforming one Pareto optimal decision SFSMs allow us to do this in that each finite-state machine
vector to another is required. (FSM) has a finite set of inputs, outputs and internal states that

One approach for performing such a transformation igrovide memory, the potential capacity for learning (where
through the use of feedforward neural networks [36, Ch.2jhe transitions to states are affected by learning methods—see
Such networks can be trained so that a Pareto optimal defd9]) and certainly the complexity that we hope to manipulate
sion vector in the input produces the desired Pareto optimahd gain insight about. Moreover, the level of complexity can
decision vector at the output. Of course, a great deal of furthee changed by simply changing the numbers of states that
research and development in this context is necessary. comprise the SFSMs.

This dynamical framework based on the SIPO concept andSFSMs form a type of cellular automata that when coupled
its relationships to emergent behavior, efficiency, and simpleith appropriate transformation functions and objective func-
signalling systems (as suggested by the Lebesgue scaltions to reflect operation along a Pareto optimal frontier will
provide a framework that may enable novel approaches to &thibit the type of self-organized behavior defined in Section
research and development in ways consistent with the fil$tB. The states of each FSM will have some functional depen-
principles described earlier. Together, the two main compdence on neighboring FSMs and will be designed to stabilize
nents of the Sl paradigm, self-organization as indicated lon efficient operating points. This may entail using genetic
movement along a Pareto optimal frontier and the minimallgorithms (GAs) or involve neural networks to search the
signalling systems as indicated by the Lebesgue measure $pace of transition functions or train on prescribed operating
Pareto optima, provide a mathematical foundation from whigboints so as to induce the FSMs to operate on Pareto optimal
fundamental theories and principles of SI can be develop&ontiers.
because they are more precisely defined and characterized thafhese types of simulations provide a real microcosm of
the ratherad hoc approaches currently in vogue that attempthe S| world. It can effectively test whether natural selection
to capturesome aspect of Sl. pressures are consonant with efficient operating points in

To fully accomplish this potential however, requires somthe manner described here. Fitness functions related to the
way of applying these ideas to concrete and abstract problerafficiency measures could be used to induce the SFSMs to
i.e, test bed problems that facilitate the testing, experimentaehieve this. It would indeed be interesting to see how these
tion and ultimately the application of these ideas. The prolsFSMs can then be designed (or evolved) to efficiently handle
lems used must have some potential for exhibiting emergdaradeoffs of efficiency measures, a cornerstone of the SIPO
phenomena and at the same time allow for modelling tlmncepts described earlier.
simple forms of interaction, the stigmergy, that is the hallmark The use of SFSMs allow for abstractions and, ultimately,
of SI. Theproblem framework, the last of the three formalism practical implementations. The level of complexity can be
components, provides these important elements for S| reseacdmtrolled in the sense that the size of the FSMs, its number of
and development and is described in the next section. states, inputs and outputs, can be decided wppriori. The
state space of the SFSMs, how its transformation functions
are established and how they interact of course require further
research, but this problem framework and the other two for-
An important aspect of the problem framework is that inalisms mentioned earlier provide an important structure on

allows specific questions to be asked and problems explorgghich real swarm intelligence can be studied and implemented
It must be sufficiently general to not only capture the essenti@dr real-world problems.

elements of the phenomenon, but also offer some avenues oI js worth pointing out, however, that much of what has

which to implement the dynamical framework. It must also bgeen described, the properties and characteristics and such,
specific enough to allow useful and appropriate mathematiqgdve features in common with many other areas of inquiry
tools to be brought to bear. The problem framework described the sciences and engineering. The following areas describe

here attempts to achieve this by describing an abstract problggime of these features that offer some potentially useful tools
type based on what is termed here samrming finite state  and ideas for developing Sl systems.

machine (SFSMs) models.
1) Swvarming Finite State Machine Models. The idea be- N _ .
hind SFSMs is that notwithstanding the limited capabilitieD- Other Scientific/Engineering Tools
of swarms of entities, we should nonetheless provide somel) Group Theory: The structure of the emergent or self-
way of flexibly describing their level of complexity. Afterall, organized behavior in SI based on the meta-formalisen,

C. The Problem Framework
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movement along the Pareto optimal frontier, provides a num-It is also worth noting that the transformation functions
ber of methodologic and analytical advantages for explorinyat determine how each cell evolves are usually very sim-
the fundamentals of SI. The most significant aspect of thjde functions—somewhat analogous to the limited forms of
structure is that it may permit the use gfoup theory in communication associated with Sl and stigmergy. But in Sl,
developing the fundamental theories of Sl. Group theorhe relationships among the entities is dynamic owing to the
provides powerful mathematical tools as well as the distinatobility of the agents of change. Entity relationships are
possibility of developing novel insights. not fixed as in CAs. Notwithstanding this distinction, SFSMs
This perspective requires a number of reasonable assundpscribed above can model this mobility in a way consistent
tions and conceptions. A basic conception is that we can modeth a CA paradigm by incorporating system states that model
each entityi in a swarm as aubsystem that exists in a number changing environmental conditions.
of differentstates x; = (1, . . ., 2 ) defined byn parameters  3) Multi-Objective Optimization: One important aspect in
corresponding to values associated with the local environmeantking a connection between self-organization and Pareto
as well as the status of the agents themselves. The soaptima is how these Pareto optima are identified. By creatively
insects, the ants for example, can be viewed asatijgmts utilizing the Lebesgue measure, SA and other heuristics can be
of change in that they modify the states of these subsystemsngineered to search for these operating points in a very direct
The states of each subsystem also affect the states and ag@emaig by maximizing this Lebesgue measure. This can be done
of neighboring subsystems, hence is conceptually similar t&ing the COSA concept which happens to incorporate simple
cellular automata described below. signalling systems as well. Many useful analogies to Sl thus
The actions of these agents of change can be modelledu@ggome apparent. Swarms of insects are analogous to parallel
transformations on the states of each subsystem. xetlenote processors, simple signals in SI are analogous to the scalar
the resulting state from the operation of a transformatidnebesgue measure or some estimate of it, maximization of this
function 7;. Now T; may, in effect, be a function of not just Lebesgue measure is analogous to movement along a Pareto
the state of entity, i.e., x;, but also the states of neighboringoptimal frontier, hence a type of self-organized behavior. This
subsystems. Thusl}(x;) = f(...x;—1,%i,Xi+1...) Where also suggests an interesting, and perhaps profound, unity of
the states of neighboring subsystems are explicitly denotedncepts between and among the various paradigms described
and f is a vector-valued function. Subsequent states, thokere.
resulting from the action of the agents of change can be related4) Game Theory: The dynamics of insect colonies involve
to the current states by competition and cooperation among them and so unavoidably
X = o i, X, Kind - ) = f(xz-) il_wvolve aspects o_f game theory. The (_dynamics of competi-
o tion and cooperation constitute the major components of the
for somef < F; that is functionally dependent on the states ahore interesting aspects of game theory [40]. Game theoretic
the neighbors of. Because of our first and second formalismszoncepts such as the famoddash Equilibrium are really
these transformations must restrict the output states to titatements about Pareto optimality and how interacting entities
set of Pareto optima or near Pareto optim®’, i.e, x' € achieve the greatest utility in a changing environment of
S = PUP. In effect, the neighboring subsystems selegompetition and cooperation [41, p.193,339].
transformations from a familyF; of transformations all of  5) Markov Random Fields: The theory ofMlarkov Random
which map one point i’ onto another point irf. Assuming Fields (MRFs) shares a great deal in common with that of
the existence of identity and inverse transformations for eagibltzmann Machines, SA and CA. As alluded to earlier in the
such point, the set; constitutes asymmetric group ([19]) paragraphs offficient Tradeoffs ...), some subsystem states
over the states. may not be allowed to coexist with neighboring subsystem
2) Cellular Automata: Complexity theory, in particular states. MRFs can model this type of behavior and have the
theories regardingellular automata (CA) share a number desirable Markov property in terms of spatial attributes. This
of features with SI (see [6, p. 245]). CAs are characterizgstovides a mathematical structure to these problems. A large
by a set ofcells usually arranged in some geometric patterBody of useful theoretical results on MRFs exists€sg [42])
(although this is not technically required) and connected #nd may be quite useful in addressing some of the issues in

other similar cells by some neighborhood rule. Each cell h&j3 and how efficient tradeoffs of efficiency measures may be
a finite number of states which are determined by the statggalyzed.

of its immediate neighbors. State transitions are defined by
simple rules, a central component of cellular automata, that
produce complex patterns often described as self-organized
[36], [3]. The distinctions between S| and CA as proposed The growth of communications and networked systems
here involve the connection between the emergent behavimmposes on a us a need to explore new and imaginative
and Pareto optimality. CAs usually do not involve objectivevays to address the expected problems in managing these
functionsper se. It is also worth noting that there is a deepsystems. Effectively utilizing the Sl paradigm requires some
connection between CA and group theory [3, Ch. 3: Groufjpameworks on which to first build the relevant theory and then
CA Characterization]. Chaudhust al. [3] provide a number guide research toward practical implementations. This article
of theoretical results on the connection between CA and cyckxamined three aspects of a meta-formalism that attempt to
groups and other group properties. provide this necessary structure to further research into Sl and

IV. CONCLUSION
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